Water Security & Sustainable Development Hub Logo
  1. Home /
  2. Resources /
  3. Evaluation of factors affecting the quality of citizen science rainfall data in Akaki catchment
Resource

Evaluation of factors affecting the quality of citizen science rainfall data in Akaki catchment

Addis Ababa, Ethiopia

11 August 2022


The Akaki River flows downstream under a bridge and past rocks and trees, picking up more pollution as it passes through Addis Ababa, the capital city of Ethiopia
The Akaki River flows downstream under a bridge and past rocks and trees, picking up more pollution as it passes through Addis Ababa, the capital city of Ethiopia

Part of the Akaki River, Ethiopia

Authors: Hailay Zeray Tedla, Alemseged Tamiru Haile, David W. Walker, Assefa M. Melesse


Citizen Science can fulfil the quest for high-quality and sufficient environmental data, such as rainfall. However, the factors affecting the quality of rainfall data collected by the citizen scientists are not well understood. In this study, authors examined the effect of citizen scientists’ attributes on the quality of rainfall data. For this purpose, Principal Component Analysis (PCA), stepwise regression, and Multiple Linear Regressions (MLR) were used. A quality control procedure was developed and applied for daily observed rainfall data collected in the summer rainy season of 2020. Attributes of the citizen scientists were gathered for those who collected rainfall data in the urban and peri urban Akaki catchment, located in the Upper Awash sub-basin, Ethiopia.

This study found that easy-to-detect errors, which were identified during the initial stage of quality control, formed most of the errors in the rainfall data. The PCA and stepwise regression results revealed that four dominant attributes (education level, gauge relative location, use of smartphone app, and supervisor’s travel distance) highly affected the rainfall data quality. The MLR model using these four prominent dominant variables performed very well with R2 value of 0.98. The k-fold cross validation result showed that the developed model can be used to predict the relationships between data quality and attributes of citizen scientists with high accuracy. Hence, the PCA technique, stepwise regression and MLR model can provide useful information regarding the influence of citizen scientists’ attributes on rainfall data quality. Therefore, future studies should carefully consider citizen scientists' attributes when engaging and supervising citizen scientists, with a comprehensive data quality control while monitoring rainfall.

This website uses cookies to ensure you get the best experience on our website.